Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Rev Cell Mol Biol ; 384: 77-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637101

RESUMO

Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-ß resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.


Assuntos
Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Humanos , Feminino , Neoplasias Inflamatórias Mamárias/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Biologia Molecular , Microambiente Tumoral
2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674108

RESUMO

Early evidence suggests a strong impact of tumour-infiltrating lymphocytes (TILs) on both the prognosis and clinical behaviour of ovarian cancer. Proven associations, however, have not yet translated to successful immunotherapies and further work in the field is urgently needed. We aimed to analyse the tumour microenvironment of a well-characterised cohort of ovarian cancer samples. Tumour markers were selected owing to their comparative underrepresentation in the current literature. Paraffin-embedded, formalin-fixed tumour tissue blocks of 138 patients representative of the population and including early stage disease were identified, stained for CD3, CD20, CD68 and CD163 and analysed for both the stromal and intertumoral components. Data were statistically analysed in relation to clinical details, histological subtype, borderline vs. malignant status, survival and management received. Mean stromal CD3, total CD3 count, mean stromal CD20 and total CD20 count all correlated negatively with survival. Malignant ovarian tumours consistently demonstrated significantly higher infiltration of all analysed immune cells than borderline tumours. Assessment of the stromal compartment produced a considerably higher proportion of significant results when compared to the intra-tumoural infiltrates. Customary assessment of solely intra-tumoural cells in advanced stage disease patients undergoing primary debulking surgery should be challenged, with recommendations for future scoring systems provided.


Assuntos
Carcinoma Epitelial do Ovário , Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Feminino , Prognóstico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Microambiente Tumoral/imunologia , Idoso , Adulto , Biomarcadores Tumorais , Antígenos CD/metabolismo , Idoso de 80 Anos ou mais
3.
STAR Protoc ; 5(2): 102956, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38512866

RESUMO

Preclinical tumor models have advanced our understanding of the tumor microenvironment. However, the temporal dynamics of cellular recruitment and retention within these models is poorly understood. Here, we present a protocol using transcutaneous labeling of the tumor compartment using subcutaneous and orthotopic tumors. We describe the process of cell line implantation and photoconversion of tumors to differentiate newly recruited cells from those retained within tumors. Photoconversion enables tracking of both immune cell recruitment to tumors and egress to the lymphatics. For complete details on the use and execution of this protocol, please refer to Li et al.1 and Molostvov et al.2.

4.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277610

RESUMO

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Assuntos
Diabetes Mellitus Tipo 2 , Grelina , Camundongos , Animais , Masculino , Grelina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Camundongos Knockout , Ingestão de Alimentos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo
5.
Oncol Lett ; 25(5): 177, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37033098

RESUMO

Ovarian cancer is a major cause of cancer-related deaths in women. Our previous study highlighted the interaction between cancer cells and the host immune response in solid cancers. The present study aimed to analyse the proportion, density and distribution of T and B lymphocytes within the tumour and surrounding stroma, and their prognostic significance in young women with borderline and malignant ovarian surface epithelial tumours. Full clinicopathological and outcome data were collected for 57 women aged <50 years diagnosed between January 2010 and December 2015. Representative tumour sections were stained for CD3 (T cells) and CD20 (B cells) and tumour-infiltrating lymphocytes (TILs) were scored following the TILs Working Group Recommendations and described as stromal, intra-tumoural, lymphoid aggregates and touching lymphocytes. Data were statistically analysed and the association with clinicopathological variables was assessed. The median age was 41 years and the most common histological type was serous carcinoma (n=21). The risk of malignancy index was a significant predictor of ovarian cancer diagnosis (P<0.05). A total of 15 out of 34 patients with cancer died. There was significantly greater stromal infiltration of CD3 and CD20 TILs (P=0.01 and P=0.03, respectively) and higher intratumoral CD20 expression in ovarian epithelial cancers compared with borderline tumours. The highest CD3 stroma count and density were observed in serous carcinoma, which also exhibited the highest numbers of CD3 and CD20 aggregates. There was no statistically significant difference between touching lymphocytes and tumour histological subtype. There was no significant association between TIL expression and patient survival. The count, distribution and density of T and B lymphocytes in ovarian tumours varied depending on tumour type and invasiveness. Their topographic distribution within the tumour and surrounding stroma did not impact prognosis in young women with ovarian cancer. TIL analysis in an older age group of women with ovarian tumours is ongoing to determine its potential prognostic significance.

6.
Cell Rep ; 42(3): 112207, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867531

RESUMO

The immune microenvironment in breast cancer (BCa) is controlled by a complex network of communication between various cell types. Here, we find that recruitment of B lymphocytes to BCa tissues is controlled via mechanisms associated with cancer cell-derived extracellular vesicles (CCD-EVs). Gene expression profiling identifies the Liver X receptor (LXR)-dependent transcriptional network as a key pathway that controls both CCD-EVs-induced migration of B cells and accumulation of B cells in BCa tissues. The increased accumulation oxysterol ligands for LXR (i.e., 25-hydroxycholesterol and 27-hydroxycholesterol) in CCD-EVs is regulated by the tetraspanin 6 (Tspan6). Tspan6 stimulates the chemoattractive potential of BCa cells for B cells in an EV- and LXR-dependent manner. These results demonstrate that tetraspanins control intercellular trafficking of oxysterols via CCD-EVs. Furthermore, tetraspanin-dependent changes in the oxysterol composition of CCD-EVs and the LXR signaling axis play a key role in specific changes in the tumor immune microenvironment.


Assuntos
Neoplasias da Mama , Oxisteróis , Humanos , Feminino , Receptores X do Fígado/metabolismo , Neoplasias da Mama/genética , Oxisteróis/farmacologia , Tetraspaninas , Linfócitos B/metabolismo , Microambiente Tumoral
7.
Pathobiology ; 90(1): 31-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35705026

RESUMO

INTRODUCTION: Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with a poorly characterized immune microenvironment. METHODS: We used a five-colour multiplex immunofluorescence panel, including CD68, CD4, CD8, CD20, and FOXP3 for immune microenvironment profiling in 93 treatment-naïve IBC samples. RESULTS: Lower grade tumours were characterized by decreased CD4+ cells but increased accumulation of FOXP3+ cells. Increased CD20+ cells correlated with better response to neoadjuvant chemotherapy and increased CD4+ cells infiltration correlated with better overall survival. Pairwise analysis revealed that both ER+ and triple-negative breast cancer were characterized by co-infiltration of CD20 + cells with CD68+ and CD4+ cells, whereas co-infiltration of CD8+ and CD68+ cells was only observed in HER2+ IBC. Co-infiltration of CD20+, CD8+, CD4+, and FOXP3+ cells, and co-existence of CD68+ with FOXP3+ cells correlated with better therapeutic responses, while resistant tumours were characterized by co-accumulation of CD4+, CD8+, FOXP3+, and CD68+ cells and co-expression of CD68+ and CD20+ cells. In a Cox regression model, response to therapy was the most significant factor associated with improved patient survival. CONCLUSION: Those results reveal a complex unique pattern of distribution of immune cell subtypes in IBC and provide an important basis for detailed characterization of molecular pathways that govern the formation of IBC immune landscape and potential for immunotherapy.


Assuntos
Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Neoplasias da Mama/patologia , Linfócitos do Interstício Tumoral , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Microambiente Tumoral
8.
Oncogene ; 40(45): 6321-6328, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34625709

RESUMO

Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.


Assuntos
Sinalização do Cálcio , Infecções por Vírus Epstein-Barr/genética , Linfoma de Células B/genética , Retículo Endoplasmático/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/patogenicidade , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/virologia , Mutação
9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34521767

RESUMO

Early stages of colorectal cancer (CRC) development are characterized by a complex rewiring of transcriptional networks resulting in changes in the expression of multiple genes. Here, we demonstrate that the deletion of a poorly studied tetraspanin protein Tspan6 in Apcmin/+ mice, a well-established model for premalignant CRC, resulted in increased incidence of adenoma formation and tumor size. We demonstrate that the effect of Tspan6 deletion results in the activation of EGF-dependent signaling pathways through increased production of the transmembrane form of TGF-α (tmTGF-α) associated with extracellular vesicles. This pathway is modulated by an adaptor protein syntenin-1, which physically links Tspan6 and tmTGF-α. In support of this, the expression of Tspan6 is frequently decreased or lost in CRC, and this correlates with poor survival. Furthermore, the analysis of samples from the epidermal growth factor receptor (EGFR)-targeting clinical trial (COIN trial) has shown that the expression of Tspan6 in CRC correlated with better patient responses to EGFR-targeted therapy involving Cetuximab. Importantly, Tspan6-positive patients with tumors in the proximal colon (right-sided) and those with KRAS mutations had a better response to Cetuximab than the patients that expressed low Tspan6 levels. These results identify Tspan6 as a regulator of CRC development and a potential predictive marker for EGFR-targeted therapies in CRC beyond RAS pathway mutations.


Assuntos
Biomarcadores Tumorais/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Tetraspaninas/metabolismo , Tetraspaninas/fisiologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Taxa de Sobrevida , Tetraspaninas/genética , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445169

RESUMO

Tetraspanins are a family of transmembrane proteins that form a network of protein-protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Gangliosídeos/metabolismo , Proteína Kangai-1/metabolismo , Tetraspanina 28/metabolismo , Membrana Celular/química , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/citologia , Gangliosídeos/análise , Humanos , Proteína Kangai-1/análise , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Tetraspanina 28/análise
11.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207462

RESUMO

The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Proteína Kangai-1/metabolismo , Metástase Neoplásica/patologia , Neoplasias/metabolismo , Fibras de Estresse/metabolismo , Tetraspaninas/metabolismo , Caveolina 1/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/patologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
12.
Biomol NMR Assign ; 14(2): 221-225, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535836

RESUMO

The CaMK subfamily of Ser/Thr kinases are regulated by calmodulin interactions with their C-terminal regions. They are exemplified by Ca2+/calmodulin dependent protein kinase 1δ which is known as CaMK1D, CaMKIδ or CKLiK. CaMK1D mediates intracellular signalling downstream of Ca2+ influx and thereby exhibits amplifications of Ca2+signals and polymorphisms that have been implicated in breast cancer and diabetes. Here we report the backbone 1H, 13C, 15N assignments of the 38 kDa human CaMK1D protein in its free state, including both the canonical bi-lobed kinase fold as well as the autoinhibitory and calmodulin binding domains.


Assuntos
Biocatálise , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
13.
J Med Chem ; 63(13): 6784-6801, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433887

RESUMO

Polymorphisms in the region of the calmodulin-dependent kinase isoform D (CaMK1D) gene are associated with increased incidence of diabetes, with the most common polymorphism resulting in increased recognition by transcription factors and increased protein expression. While reducing CaMK1D expression has a potentially beneficial effect on glucose processing in human hepatocytes, there are no known selective inhibitors of CaMK1 kinases that can be used to validate or translate these findings. Here we describe the development of a series of potent, selective, and drug-like CaMK1 inhibitors that are able to provide significant free target cover in mouse models and are therefore useful as in vivo tool compounds. Our results show that a lead compound from this series improves insulin sensitivity and glucose control in the diet-induced obesity mouse model after both acute and chronic administration, providing the first in vivo validation of CaMK1D as a target for diabetes therapeutics.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Dieta/efeitos adversos , Descoberta de Drogas , Resistência à Insulina , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Obesidade/induzido quimicamente , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico
14.
J Pathol ; 251(1): 63-73, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32129471

RESUMO

The immune microenvironment in inflammatory breast cancer (IBC) is poorly characterised, and molecular and cellular pathways that control accumulation of various immune cells in IBC tissues remain largely unknown. Here, we discovered a novel pathway linking the expression of the tetraspanin protein CD151 in tumour cells with increased accumulation of macrophages in cancerous tissues. It is notable that elevated expression of CD151 and a higher number of tumour-infiltrating macrophages correlated with better patient responses to chemotherapy. Accordingly, CD151-expressing IBC xenografts were characterised by the increased infiltration of macrophages. In vitro migration experiments demonstrated that CD151 stimulates the chemoattractive potential of IBC cells for monocytes via mechanisms involving midkine (a heparin-binding growth factor), integrin α6ß1, and production of extracellular vesicles (EVs). Profiling of chemokines secreted by IBC cells demonstrated that CD151 increases production of midkine. Purified midkine specifically stimulated migration of monocytes, but not other immune cells. Further experiments demonstrated that the chemoattractive potential of IBC-derived EVs is blocked by anti-midkine antibodies. These results demonstrate for the first time that changes in the expression of a tetraspanin protein by tumour cells can affect the formation of the immune microenvironment by modulating recruitment of effector cells to cancerous tissues. Therefore, a CD151-midkine pathway can be considered as a novel target for controlled changes of the immune landscape in IBC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Inflamatórias Mamárias/patologia , Macrófagos/patologia , Tetraspanina 24/metabolismo , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Humanos , Neoplasias Inflamatórias Mamárias/metabolismo , Macrófagos/metabolismo , Midkina/metabolismo , Tetraspanina 24/imunologia
15.
Pathobiology ; 87(2): 61-74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31715606

RESUMO

The prognostic value of the immune cell infiltrate in the breast carcinoma microenvironment is still uncertain. We reviewed published articles analysing the infiltration of inflammatorycells in the microenvironment of breast carcinoma. Data revealed the importance of infiltration of these immune cells in the prognosis of breast carcinoma, particularly the triple-negative and HER2-positive phenotypes. Tumour-infiltrating lymphocytes and their subtypes play a fundamental role in predicting the pathological complete response (pCR) to neoadjuvant chemotherapy. More research aiming to dissect a complex network of communication between cancer cells and other cellular components of the tumour microenvironment is necessary to develop more effective therapeutic approaches.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos do Interstício Tumoral/imunologia , Terapia Neoadjuvante , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Neoplasias da Mama/terapia , Feminino , Humanos , Linfócitos do Interstício Tumoral/classificação , Prognóstico , Transdução de Sinais/imunologia , Neoplasias de Mama Triplo Negativas/imunologia
16.
J Cell Sci ; 131(21)2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30257985

RESUMO

Expression of the tetraspanin CD151 is frequently upregulated in epithelial malignancies and correlates with poor prognosis. Here, we report that CD151 is involved in regulation of the expression of fibroblast growth factor receptor 2 (FGFR2). Depletion of CD151 in breast cancer cells resulted in an increased level of FGFR2. Accordingly, an inverse correlation between CD151 and FGFR2 was observed in breast cancer tissues. CD151-dependent regulation of the FGFR2 expression relies on post-transcriptional mechanisms involving HuR (also known as ELAVL1), a multifunctional RNA-binding protein, and the assembly of processing bodies (P-bodies). Depletion of CD151 correlated with inhibition of PKC, a well-established downstream target of CD151. Accordingly, the levels of dialcylglycerol species were decreased in CD151-negative cells, and inhibition of PKC resulted in the increased expression of FGFR2. Whereas expression of FGFR2 itself did not correlate with any of the clinicopathological data, we found that FGFR2-/CD151+ patients were more likely to have developed lymph node metastasis. Conversely, FGFR2-/CD151- patients demonstrated better overall survival. These results illustrate functional interdependency between CD151 complexes and FGFR2, and suggest a previously unsuspected role of CD151 in breast tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Quinase C/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Tetraspanina 24/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Tetraspanina 24/biossíntese , Tetraspanina 24/genética , Transcrição Gênica
17.
Am J Physiol Gastrointest Liver Physiol ; 313(2): G138-G149, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473332

RESUMO

CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention.NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Adesão Celular/fisiologia , Doença Hepática Terminal/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Linfócitos/metabolismo , Tetraspanina 24/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Carcinoma Hepatocelular/patologia , Doença Hepática Terminal/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Mol Neurodegener ; 12(1): 25, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28279219

RESUMO

BACKGROUND: The mechanisms behind Aß-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aß production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aß levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Tetraspaninas/metabolismo , Animais , Western Blotting , Exossomos/metabolismo , Exossomos/ultraestrutura , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
Oncotarget ; 8(8): 13277-13292, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28129652

RESUMO

The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.


Assuntos
Antígenos de Superfície/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Animais , Antígenos de Superfície/metabolismo , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/metabolismo , Transplante Heterólogo
20.
Platelets ; 28(7): 629-642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28032533

RESUMO

The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/genética , Tetraspaninas/genética , Difosfato de Adenosina/farmacologia , Animais , Ácido Araquidônico/farmacologia , Plaquetas/patologia , Proteínas de Transporte/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/farmacologia , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Cultura Primária de Células , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Tetraspaninas/química , Tetraspaninas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA